Einstein metrics and fibred Riemannian structures

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

Einstein - Weyl structures and Bianchi metrics

We analyse in a systematic way the (non-)compact four dimensional Einstein-Weyl spaces equipped with a Bianchi metric. We show that Einstein-Weyl structures with a Class A Bianchi metric have a conformal scalar curvature of constant sign on the manifold. Moreover, we prove that most of them are conformally Einstein or conformally Kahler ; in the non-exact Einstein-Weyl case with a Bianchi metr...

متن کامل

ON THE LIFTS OF SEMI-RIEMANNIAN METRICS

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

متن کامل

Einstein–Maxwell–Dilaton metrics from three–dimensional Einstein–Weyl structures

A class of time dependent solutions to (3 + 1) Einstein–Maxwell-dilaton theory with attractive electric force is found from Einstein–Weyl structures in (2+1) dimensions corresponding to dispersionless Kadomtsev–Petviashvili and SU(∞) Toda equations. These solutions are obtained from time–like Kaluza–Klein reductions of (3 + 2) solitons. ∗email [email protected]

متن کامل

Sobolev Metrics on the Riemannian Manifold of All Riemannian Metrics

On the manifold M(M) of all Riemannian metrics on a compact manifold M one can consider the natural L-metric as decribed first by [10]. In this paper we consider variants of this metric which in general are of higher order. We derive the geodesic equations, we show that they are well-posed under some conditions and induce a locally diffeomorphic geodesic exponential mapping. We give a condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kodai Mathematical Journal

سال: 1983

ISSN: 0386-5991

DOI: 10.2996/kmj/1138036800